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SUMMARY 

Two reduced forms of the Euler equations which allow spatial marching in subsonic flow regions are 
investigated for solving the inviscid blunt body problem. An analysis of the eignevalues to determine the 
properties of the steady and unsteady forms of the governing equations is performed. The steady forms of 
both the thin shock layer equations and the pressure gradient splitting method are appropriate for a 
marching solution technique. Numerical results from the thin layer equations are less accurate, and the 
suitability of this approach in a global iteration procedure is questioned as the analysis shows information is 
not transmitted upstream. The pressure gradient splitting method gives more accurate results with a single 
downstream march and appears better suited for use in a global iteration procedure to obtain the complete 
solution of the Euler equations. Further evaluation of the pressure gradient splitting method shows that it 
can be readily applied over a range of Mach numbers, and the accuracy of the results is only slightly 
dependent on the free-stream Mach number. 
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1. INTRODUCTION 

This paper is part of an investigation aimed at obtaining solutions to the hypersonic blunt body 
problem with an efficient computational approach that can be used in design studies. Although 
the present paper is limited to inviscid flow of a perfect gas, the desired solutions should include 
viscous and real gas effects. One of the significant phenomena that occurs in modelling 
hypersonics flows is that air must be treated as a chemically reacting, multi-component gas 
mixture. Before this complete problem can be handled effectively, the basic numerical solution 
procedure must be developed and its properties understood. 

Temporal marching techniques that solve the unsteady governing equations are one of the 
standard techniques for solving the blunt body problem. For the inviscid case, the work of Moretti 
and Bleich' is one of the fundamental papers on this approach. There are presently several items 
that limit the usefulness of this approach: (1) initial conditions must be assumed that are a crude 
assumption of the flow field or are far from the desired solution, i.e. uniform flow; (2) the 
convergence of the solution to a steady state is slow with a large number of time steps required, 
especially for the viscous flow case; (3) for gas models with viscous effects and finite rate chemistry, 
this approach strains the capabilities of today's supercomputers. It is interesting to observe that 
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some of the recent time marching techniques, for example those of Zhuang and Zhang' and 
Candler and Ma~Cormack ,~  are similar to the spatial marching techniques discussed in this paper. 

Several spatial marching approaches have been used previously for solving the hypersonic flow 
over a blunt body. The initial inviscid work of Chernyi: Chester' and Freeman6 used the 
Newtonian limit equations obtained by expanding about y = 1 and infinite free-stream Mach 
number. Results from this approach are of limited accuracy as the tangential velocity is zero at the 
surface and a singularity occurs on a sphere at 60". More accurate results are obtained from the 
thin shock layer equations (convective terms neglected in normal momentum equation) which 
were developed for solving viscous flows over bodies at low Reynolds numbers by Cheng.' This 
approach was extended by Davis* to a composite set of equations that includes all the terms in the 
Euler equations plus the additional terms that occur in the second-order boundary layer 
equations and is referred to as the viscous shock layer method. 

Another marching approach has evolved from the initial work of Rudman and Rubin' for 
hypersonic flow over a flat plate where the pressure gradient in the flow direction is neglected in 
the momentum equation along the p1ate.h addition, the viscous terms with second derivatives in 
the flow direction are neglected in the Navier-Stokes equations. This reduced form of the 
Navier-Stokes equations with some type of approximation for the pressure gradient in the flow 
direction has become known as the parabolized Navier-Stokes (PNS) approach. To take into 
account the pressure gradient more accurately, Lin and Rubin" introduced the sublayer 
approximation for calculating supersonic flow over a cone. In this approach the pressure gradient 
in the subsonic flow region near the body surface is determined from the pressure gradient in the 
adjacent supersonic region. The sublayer approximation gives a marching solution technique if 
the sublayer pressure gradient is evaluated sufficiently far into the supersonic region. Lubard and 
Helliwell"~ have shown that a stable numerical marching scheme is obtained with the complete 
pressure gradient term retained if the marching step size is greater than a critical value. If part of 
the pressure gradient is retained in the subsonic flow regions, the governing equations can still be 
solved with spatial marching. The part of the pressure gradient that can be retained in the 
governing equations to avoid elliptic governing equations in the subsonic flow regions was 
determined by Vigneron et ~ a 1 . I ~  This result shows how to split the pressure gradient into two 
parts; one part is included in the marching solution, while the other part is neglected or evaluated 
with a global iteration procedure. Additional contributions have been made to the PNS approach 
by Schiff and Steger,14 whose technique was developed for governing equations in general co- 
ordinates and in strong conservation law form. The use of the PNS equations has become the 
standard technique to predict flow downstream on bodies where the inviscid flow is supersonic or 
hypersonic. More details on these approaches as they apply to the Euler equations will be given in 
Section 3. 

The reduction of the Navier-Stokes equations to a system of governing equations that can be 
solved with a marching scheme has been developed for various flow problems. A review of some of 
this work is available in Davis and Rubin," while techniques for internal flows are given in 
Blottner.16 More complete solutions of the Navier-Stokes equations can be obtained with the 
spatial marching procedure when a global iteration for the pressure field is included. A summary 
of some of this work is given in Rubin and Reddy." 

The present investigation is concerned with numerical solutions of the thin shock layer 
equations and the Euler equations with pressure gradient splitting for solving the inviscid blunt 
body problem. These approximate solutions can provide useful engineering predictions or can be used 
as initial conditions in a global iteration procedure which will provide the numerical solution to 
the complete governing equations. With an assumed shock wave, these approaches allow the 
solution to be started at the stagnation point and marched downstream through the subsonic flow 
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region. Beyond the sonic line the complete Euler equations are solved. At the stagnation point the 
governing equations become ordinary differential equations with an approximation for the second 
derivative of the pressure gradient in the tangential direction required. The pressure gradient term 
is evaluated from the normal momentum equation with the thin shock layer approach, while the 
pressure gradient at the shock wave is used across the layer with the pressure gradient splitting 
approach. In both cases the governing equations are approximated with a box scheme, and the 
difference equations are locally linearized and solved as a coupled system of equations. At each 
marching step the solution is iterated to account for the linearization of the governing equations, 
and the shock wave properties are held fixed in the subsonic region but updated downstream 
where the flow is completely supersonic. 

A numerical procedure has been developed and a code written for solving the aforementioned 
problem. The details of the development of this code are given in Davis and Blottner" and 
Blottner.' Numerical predictions have been made with both methods and are compared with 
steady-state results obtained from an unsteady solution code. Further work is required to improve 
the iteration procedure used to move the shock wave. 

2. GOVERNING CONSERVATION EQUATIONS 

The inviscid flow equations are written in surface co-ordinates with s the distance along the 
surface from the stagnation point and n the normal distance away from the surface. The velocity 
components are u and u and are in the s and n co-ordinate directions respectively. The Euler 
equations are written in the following form: 

s-momentum 

n-momentum 

continuity 

energy 

au au a P  p u  -+ H P U - -  an K P U ~  + H -=o, an as 

where the metric term H = 1 +tin and the radial distance r =rb + n cos 0,. The variable ti is the 
surface curvature, r ,  is the radial distance from the body axis to the surface of the body and 6, is 
the angle between the body surface and the body axis. The total enthalpy HT is written in terms of 
the pressure p ,  the density p and the total energy e,  which gives H ,  = ( e  + p ) / p  = h +&u2 + u2),  where 
for a perfect gas the specific enthalpy is h = [ y / ( y  - l)]p/p. 

3. REDUCED GOVERNING EQUATIONS 

The foregoing Euler equations are elliptic when the flow is subsonic and hyperbolic for supersonic 
flow. There are several technniques to change the properties of these equations so that a marching 
solution technique can be used when the flow is subsonic. The initial efforts in solving the blunt 
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body problem considered the Newtonian limit equations4- which are obtained by letting y+ 1 
and M ,  -+ 00. A small parameter E = (y - l)/(y + 1) is introduced and the variables are expanded as 
follows: p = pO/& + . . . , u = &uO + . . . and n = E N  + . . . . The reduced Euler equations from the 
leading terms in the expansion and with the subscripts neglected become 

s-momentum 

n-momentum 

(6) aP 
dn 

- rcpu2 + H - =0,  

and the mass and energy equations remain the same. For this case the governing equations are 
parabolic and the shock wave is next to the body surface. Therefore the bow shock location is 
known and the flow properties behind the shock wave are known from the Rankine-Hugoniot 
relations. This gives p+w, u+O and the u-velocity and enthalpy are constant along streamlines. 
These equations have a singularity at 60" on a sphere. 

The thin shock layer' or thin viscous shock layer equations are the same as the Newtonian limit 
equations except dp/ds is treated as a principal term in the s-momentum equation. The s- 
momentum, mass and energy equations are the complete equations (l), (3) and (4) given above. 
The approximation for the n-momentum equation is equation (6), where the convection terms in 
the complete equation have been neglected. The thin shock layer equations are of initial value type 
(parabolic) in the s-direction and can be marched spatially. For subsonic flow, the flow variables 
from the Rankine-Hugoniot relations with specified shock wave are used as boundary conditions. 
The flow field predicted from these equations has more appropriate behaviour near the body 
surface and the u-velocity varies along the surface. 

In the initial work of Cheng' the inverse blunt body problem of a specified shock wave was used 
and the body shape was obtained from the solution. This approach is truly a spatial marching 
procedure. In the work of Davis' the direct problem is solved where the body shape is specified 
and the shock wave location is determined with a global iteration procedure. The neglected 
convective terms in the normal momentum equation are retained when the global iteration is 
performed. The earlier work with a perfect gas model was modified to include a finite rate 
chemistry model by Davis and extended further by Moss.20 An improved iteration technique was 
developped by Srivastava et al.'l and the latest work on this problem is given in Gordon and 
Davisz2 The extension of the viscous shock layer approach to the three-dimensional case was 
performed by Murry and Lewis.23 Lewis and co-workers have performed significant work on the 
viscous shock layer approach and have inccluded various real gas models into the codes. A few 
iterations are generally used to include the influence of the neglected convection terms. For 
problems with strong upstream influences, this approach could have slow convergence properties 
and this is discussed later in this paper. 

Another approach is the pressure gradient splitting technique' where the pressure gradient term 
dp/d( is modified in the s-momentum equation with the Vigneron condition, which is expressed as 

dPV 0 -= p; = wpr, + (1 - w)pr. a t  (7) 

The pressure gradient p: is assumed known, while the other part of the pressure gradient ps is 
obtained as part of the solution procedure. It has been shown by Vigneron et a1.l3 for the 
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Cartesian form of the Euler equations and by Prabhu and Tannehil124 for the equations in 
generalized co-ordinates that w can be chosen so that the eigenvalues are real and positive as long 
as there is no reverse flow. For this situation the equations are hyperbolic and can be solved with a 
marching technique. For the present set of equations with the Mach number Mu = u/a and speed of 
sound a2 = yp /p ,  the Vigneron condition becomes 

w<yM,2/[1+(y--l)M,2], where O<Mu<l.  (8) 
When the Mach number Mu is zero, the pressure gradient is completely specified by p:. When the 
Mach number M u  2 1, then o = 1 and the pressure gradient is completely determined from the 
solution. This approach has been applied to the governing momentum equations written in 
Cartesian co-ordinate directions and with Cartesian velocity components. Also the approach is 
used for the downstream region on hypersonic vehicles where the inviscid flow is supersonic or 
hypersonic. Recently Davis and Blottner'*- l 9  have used this marching approach for solving the 
blunt body problem. 

4. TRANSFORMED GOVERNING EQUATIONS 

The variables are non-dimensionalized with the free-stream velocity V,, free-stream density p m  
and reference length L. The pressure is made non-dimensional with p ,  V:. New co-ordinates are 
introduced: < = s/L and q = (n/L)/F, where F = n,JL is the non-dimensional distance from the 
body to the shock along a surface normal. The non-dimensional transformed governing equations 
become 

(-momentum 

q-momentum 

continuity 

energy 

av av  H a p  
at all P ar Fu - + 4- + - - - KFU' = 0, 

where Cp = v H  - uqF< and the metric term H = 1 + q F.  The foregoing governing equations can be 
used to solve for four dependent variables and the ones used in this investigation are the u and u 
velocity components, the pressure p and the temperature T. The temperature is non-dimen- 
sionalized with V&/c, and for a perfect gas is obtained from T=h=[y/(y-l)]p/p. Therefore, 
wherever the density p appears in the governing equations, it is determined from and replaced with 
this relation. 

The governing equations are completed with boundary conditions. At the wall there is one 
boundary condition, that the normal velocity u is zero. If the shock shape is specified, all of the flow 
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properties u, u, p and Tare known behind the shock wave from the Rankine-Hugoniot relations. 
Since the four governing equations are first-order, four boundary conditions are appropriate, 
while for the present problem there are five boundary conditions. The extra boundary condition is 
required to evaluate the shock layer thickness F which is an additional unknown in the governing 
equations. When F is determined, the specified shock location can be checked to see if the 
appropriate shape has been chosen. The determination of the shock wave location requires a 
global iteration procedure when the flow is subsonic and a local iteration at each marching step 
when the flow is supersonic. 

5. CHARACTERISTICS OF STEADY-STATE GOVERNING EQUATIONS 

For evaluating the properties of the governing equations, the non-conservation forms of the 
unsteady equations are usually used with dependent variables density, velocity components and 
pressure. For the present case the velocity components are tangent and normal to the body surface 
rather than the Cartesian components. The governing equations are written in matrix notation 
with the following equation order: (1) continuity, (2) <-momentum, ( 3 )  q-momentum and (4) press- 
ure. The pressure equation results from a combination of the conservation equations and for the 
present co-ordinate system has been developed by B l~ t tne r .~ ’  The transformed equations (9H12) 
after expansion, change of order, addition of time-dependent terms and combination of equations 
become 

where the dependent variable and coefficient matrices are 

u p 0  0 

H O O a u  0 
0 y p  0 Ru 

Q=[ .I, A+=!-[  0 u 0 w / p  

0 0  0 0 

(1 -R)u 

The new parameters defined are R = y - o ( y  - I), c = u(rg/r) + KV + ($/ F )  (r,,/r), f = y Ft and 
$= (b - Hy F,. For the steady-state case the governing equations become 
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where 4= 4. For the spatial marching solution of this equation, the right-hand side is assumed to 
be zero or specified. For the governing equations with pressure gradient splitting, a= 1 and w is 
determined from equation (8); while for the governing equations for the thin shock layer, a = 0 and 
w =  1. 

Along characteristic curves with slope A= dq/d5 in the 5-q plane, the dependent variables Q are 
differentiated and the resulting relations are written in the matrix form 

Equations (14) and (15) are combined to obtain the simultaneous linear equations for the 
derivatives of the dependent variables: 

This system of equations does not have a unique solution along the characteristics when the 
determinant of the coefficient matrix vanishes. Therefore the characteristics are determined from 

det[k+ : ] = O .  

Since A and B are square matrices, this determinant can be expanded and then rewritten as 
det[B-lA+] =O. The evaluation of this determinant gives 

(4 - u l F ) Z  ( d l 2 -  GA + C*)=O, 

where the coefficients are 

d = E(RM,Z - o), 

i= a[(  1 + s l )M,M,  + f (  1 + 0)]/ F,  
t = [m(M$ -1’) - H 2 ] /  F 2 .  

The following notation is used in the above coefficients: M ,  = M,H - M , f ,  M ,  = o/u and f = qFs. 
Two eigenvalues are obtained from 4 - u l F  = 0, which gives 

4 , 2  = ($- f)/F. 

For these eigenvalues the characteristics are streamlines and indicate the equations are hyperbolic 
in the 5-direction. The other two eigenvalues are determined from 

I , , , ,=  [G+J( i2  -4d2)]/2d. (17) 

For the complete Eufev equations, a= 1 and w= 1, and the coefficients become d = M i -  1, 
b^= 2( f+ M,M,)/F and c  ̂= ( M i  - f - H 2 ) / F 2 .  The properties for this case are determined by 

J(6’ - 4124 = ( 2 H / F ) J ( M i  + Mz - 1). 

If the flow is supersonic (M,2 + M i  > l), then the eigenvalues are real and the Euler equations are 
hyperbolic as is well known. For subsonic flow the eigenvalues are complex and the Euler 
equations are elliptic. 

For the case of pressure grudient spli t t ing, initially consider the properties of the governing 
equations at the surface of the body. At this location, q = 0, v = O,f= 0 and M ,  = 0. The coefficients 
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becomes B = QM,’ - o, 6= 0 and C = - l/FZ. The square root term in the eigenvalue expression ( 1  7) 
becomes 

J(6’ - 484 = (2 /F)JB.  

Therefore, if B > 0, all the eigenvalues will be real and the governing equations are hyperbolic in the 
(-direction. The condition B>O or o<QM; is satisfied if the Vigneron condition (8) is satisfied. 
The properties of the governing equations anywhere in the flow field are now considered. The 
coefficient C is written as 

t= -(Hz-f2)[1 - ( M ; + M : ) ] / F z - ( H M , + f M , ) 2 / F 2 .  

Therefore if the flow is subsonic ( M i  + M :  < I), then 2 <0, B > O  and the square root term 
J(hz-4Bt) is real and the governing equations are hyperbolic. With this set of equations 
there is a smooth transition from the reduced form of the governing equations where the flow is 
subsonic to the complete Euler equations where the flow is supersonic. 

For the thin shock layer governing equations, the coefficients with o = 1 become B = a(M; - I), 
6= 2x6, where b=(f’+ M,M,)/F, and t! is the same. If the flow is supersonic ( M :  + M t  > I), the 
eigenvalues (1 7) become 

~3,4={b+(H/F)JCMf+(M2- 1)/aI)/(M;- 1). 

These eigenvalues are real when 0 d x < 1. When a= 1, the complete Euler equations are obtained, 
while a = O  gives the thin shock layer equations and A,,,-+ f co. These two eigenvalues indicate 
the equations have parabolic properties. If the flow is subsonic (M:  + M i  < l), the eigenvalues ( I  7) 
become 

k3,4={bf(H/F)JCMX1 -MZ)/aI}/W- 1). 

These eigenvalues are real when M GO, but negative values of a have no physical significance. If a is 
negative and goes to zero, the thin shock layer equations are obtained and i3,4+ k co. These two 
eigenvalues indicate the equations have parabolic properties. There can be a jump in the 
governing equations as the thin shock layer equations are used in the subsonic region, while the 
complete Euler equations can be used where the flow is supersonic. A smooth transition between 
the two sets of equations can be obtained only where the flow is supersonic. 

6. CHARACTERISTICS OF UNSTEADY GOVERNING EQUATIONS 

For a complete solution of the Euler equations with a spatial marching technique and a global 
iteration to correct for the neglected terms, an investigation of the properties of the unsteady 
equations (1 3 )  is appropriate. In these equations the (-derivatives have been split into two parts, 
where Odod 1 is used in the pressure splitting approach while a=O for the thin shock layer 
method. The complete Euler equations are obtained with o= 1 and a= 1 and the governing 
equations are unsplit. The technique of flux vector splitting has been used in developing upwind 
difference schemes that take into account the direction information is travelling. The eigenvalues 
of the matrix A! determine the direction of travel of information in the ( - t  plane. Flux vector or 
equation splitting is not a unique technique; the form to be used depends on the desired effect. The 
present motivation is to obtain a system of governing equations that neglect small terms when A - 
is neglected and allow a spatial marching solution. In addition, the retention of the A -  terms 
should be handled with an efficient global iteration procedure. The properties of the two 
previously considered spatial marching methods are investigated by determining the eigenvalues 
of the coefficient matrix A’. 
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The eigenvalues of A +  are 

1, = u / H ,  A, = au/H,  

(( 1 + Q)u f J[( 1 + R)2UZ - 4(s2u2 -wa2)1}. 
1 

2 H  A,,,=- 

When the flow is supersonic, the eigenvalues have the same sign as the u-velocity and information 
is travelling only in the flow direction. In this case all of the t-derivatives should be backward 
differenced and a spatial marching can be used for the steady-state equations (time step-a). For 
subsonic flow, information travels upstream which must be suppressed in a spatial marching 
method. Consider the case where 0 d u < a  and the eigenvalues become: 

1 .  Complete Euler equations (a= 1 and w =  1): A,  = u / H ,  1, = u / H ,  A, = ( u + a ) / H  and 
A, = ( u  - a ) / H .  One eigenvalue is negative which indicates information is travelling upstream 
and at least one (-derivative should be forward differenced. A time-like marching procedure 
is required in this case. 

2. Pressure gradient splitting (a= 1 and 0 6 w d l ) :  Al=u/H,  A ,=u /H and A,,, is given by 
equation (1 8). The square root term in equation (1 8) becomes J[(Q - 1)’~’ + 4wa2] and will 
be real when o > O .  If w<s2(u/a)Z, which is the Vigneron condition (8), the eigenvalues As,, 
will be positive. In this case all of the (-derivatives should be backward differenced and a 
spatial marching can be used for the steady-state equations when the A -  terms are neglected 
or assumed known. 

3. Thin shock layer equations (a = 0 and o = 1): i1 = u / H ,  A2 = 0, 1, =(u + a) /H and A, =(u -a) /H.  
Eigenvalue 1, is negative, which indicates information is travelling upstream and at least one 
t-derivative should be forward differenced. This indicates that the steady-state equations 
cannot be spatially marched, which is in disagreement with the previous steady-state 
analysis. Further investigation of the properties of the thin shock layer equations is needed. 

Continuing, the eigenvalues of A -  are 

A l  =0, A, =0, 1 3 = ( 1  -a)u/H, 1, = ( 1  - Q)u/H.  

The eigenvalues A, and A, become, for OduGa:  

1. Complete Euler equations (a = 1 and w = 1): A, = 0 and A, = 0. This term does not contribute 
for this case. 

2.  Pressure gradient splitting (a = 1 and 0 < w < 1): 1, = 0 and A, = (1 -Q)u/H.  One eigenvalue is 
negative and a forward difference should be used for pr  in the (-momentum equation. With 
downstream-to-upstream sweeping in the second step of a global iteration (time marching) 
procedure, information from downstream is fed throughout the flow field in each iteration. 

3. Thin shock layer equations (CI = 0 and w = 1): A, = 0 and 1, = u / H .  One eigenvalue is positive 
and a backward difference should be used for ut in the normal momentum equation. The 
second step of the global iteration does not allow downstream information to feed upstream. 

In both of these splittings of the governing equations, the eigenvalues are not split (A # A+ + K).  
From the foregoing eigenvalue analysis of the governing equations, the following comments can 

be made about the two approximate methods with respect to where to evaluate the derivatives in 
the flow direction and how a global iteration can be performed: 

1. With the pressure gradient splitting approach all of the 5-derivatives should be backward 
differenced except for A-(aQ/a(), which is the pressure gradient and is forward differenced. 
With a global iteration procedure this term allows information to feed upstream. In the 
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downstream spatial marching solution the term A-(aQ/a<) is evaluated from a previous 
solution or initially is evaluated at the shock wave. Downstream-upstream global iteration 
procedures for the complete time-dependent equations can be developed with rapid 
convergence to the solution of the steady Euler equations. 

2. With the steady thin shock layer equations all of the <-derivatives should be backward 
differenced. This results in the suppression of all information going upstream. The term 
A-(dQ/d<) or (u /H)  ( d v / d t )  is neglected in the downstream spatial marching solution and 
should be evaluated with a backward difference when a global iteration is performed. The 
term dv/dq is also neglected in the normal momentum equation. With a global iteration these 
terms are evaluated from a previous solution and downstream marching solutions are 
performed repeatedly. It has not been established that this iteration procedure is stable. Since 
elliptic partial differential equations are being solved with a unidirectional iteration 
procedure without information being transmitted upstream, departure solutions are ex- 
pected with grid refinement and a sufficient number of iterations. 

7. NUMERICAL SOLUTION PROCEDURE 

The original solution procedure for the Euler equations with pressure gradient splitting was 
described in Davis and Blottner.'8319 When further solutions were obtained with fine grids, the 
results had oscillatory behaviour in the flow direction, with the wavelength long compared with 
the step size in this direction. The original box finite difference scheme was used for these 
calculations, where the governing equations are evaluated at  the centre of the box and the 
dependent variables are determined at the corners of the box. The spatial derivatives are evaluated 
along the edges of the box with two-point difference relations and are averaged to obtain the value 
at the centre of the box. This is a second-order method in both < and q co-ordinate directions. A 
stability analysis of this scheme with the Vigneron parameter w determined from equation (8) 
indicates the scheme is neutrally stable as all of the eigenvalues are one. One approach to remove 
these oscillations is to multiply the Vigneron parameter o by a safety factor, SFAC, which is less 
than one. It appears that as the grid is refined, the value of SFAC decreases and perhaps goes to 
zero as the marching step size goes to zero. This approach is not a pleasing resolution of the 
problem. 

The approach that is being used to remove the oscillatory behaviour is a first-order box scheme 
where the governing equations are evaluated at the centre of the upstream edge of the box. 
Backward differences are used for the (-derivatives and these are averaged at the top andbottom 
edges of the box, while the q-derivatives are evaluated with two-point differences at the 
downstream edge of the box. This scheme removes the oscillations that occur with the second- 
order box scheme but is only first-order accurate in the <-direction. This first-order box scheme 
gives poor results near the stagnation point owing to the properties of the continuity equation at 
this location. Near the stagnation point the flux terms have the following variation away from the 
origin: 

Frpu = a<' + . . . and a =( FHpu&,, 
rpq5=B(+ . . . and j3=(H2pu), .  

The continuity equation (1 l), which is in strong conservation form, requires a second-order 
scheme to obtain reasonable accuracy and gives at the first step away from the stagnation point 
the relation 2a + dp/aq = 0. This numerical behaviour is identical to the analytical evaluation. A 
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first-order scheme gives CI + ap/dy = 0 and has insufficient accuracy. Therefore the continuity 
equation is expanded and is written as 

where the relations r,=Fcos6, and r , = H  sin6,+Fgq cosd, have been used and where the 
radial velocity ur = u sin 6,+ v cos 6,. Near the stagnation point the variables are expanded as 

The terms in the continuity equation are expanded as 
SinC),= 1 - ( [ / R N ) ~ / ~ +  . . . , C O S ~ , = ~ / R N +  . . . , r = H ( +  . . . and u,=(ug+U/R,)(+ . . . . 

Fpu =( FpuJi‘ + . . . , 
p $ J = p v H +  . . . , 

FHpu,./r = Fp(u,  + u/RN) + . . . . 

With the linear or constant behaviour of these terms near the stagnation point, the first-order 
difference scheme performs much better. Similar behaviour occurs with the term Fu(dv/a t )  in the 
normal momentum equation, but this is a second-order term near the stagnation point. The 
influence on the results is small and modification of this equation is not necessary. 

The limiting form of the continuity equation required at the stagnation point to obtain the 
initial conditions is 

a ( p v H )  + 2 p F  (ug + v)  = 0. 
arl 

Equations (19) and (20) are linearized and differenced with midpoint differences as in the previous 
paper.” For the thin shock layer equations, the pressure gradient term in the (-momentum 
equation is treated as an unknown but the convection terms in the normal momentum equation 
are neglected. The difference equations for both the thin shock layer and the pressure gradient 
splitting methods are the same, except some terms are neglected and other terms are included in 
the two approximate solution procedures. The difference in the thin shock layer approach is the 
governing equation used at the stagnation point to determine pee. In the pressure gradient splitting 
method the term peg  is held constant across the shock layer and equal to the value behind the 
shock wave. In the thin shock layer approach the term prc  is evaluated from the normal 
momentum equation (10). With the expansions u=u&+ . . . , p = p l  + 4 p P s r t 2 +  . . . and 
v = v I  + $ I ~ & ~  + . . . , the normal momentum equation gives the equations 

For the thin layer equations (CI = 0) the pressure is constant across the shock layer at the stagnation 
point, and psr  is determined from the second equation and becomes 

With global iteration the term neglected in the above equation can be included to obtain an 
improved solution. 
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8. NUMERICAL RESULTS 

The two approximate solution techniques have been used to obtain the inviscid flow over a sphere 
with free-stream Mach number M ,  = 8. The polynomial expression 

F =Fo +$FZ(’ +4F4t4 +@6t6 + . . 
has been used to specify the shock layer thickness F, and details of this approach are described in 
References 18 and 19. The value of F,, is obtained as part of the solution. The three remaining 
coefficients are specified and have been adjusted such that the assumed shock location or slope 
dF/d( closely matches the value obtained from the approximate solution. The shock layer 
thicknesses obtained from the thin shock layer and the pressure gradient splitting approaches are 
compared with the solution for the complete Euler equations in Figure 1. This solution is obtained 
from a time marching codez6 and is an accurate numerical solution for the complete Euler 
equations. The two approximate methods give a thicker shock layer near the stagnation point and 
approach the exact solution downstream. The pressure gradient splitting method prediction of F 
approaches the exact solution more rapidly than the thin shock layer result. This is expected as the 
pressure gradient splitting method smoothly includes more of the neglected pressure gradient 
terms as the solution is marched downstream. In both cases the complete equations are solved 
when the flow has become supersonic. 

The body surface pressure ratio p,,/p, along the sphere is presented in Figure 2. Again the two 
approximate solutions are compared with the Euler solution. The pressure gradient splitting 
method gives values very close to the correct variation, while the thin shock layer approach gives a 
poorer prediction. 

Since the pressure gradient splitting method produces better approximate solutions, and since a 
global iteration procedure is feasible with this method as the previous eigenvalue analysis 
indicated, a further evaluation of this method is performed. It is clear from the results presented in 
Figure 1 that the shock layer thickness near the stagnation point obtained from the reduced Euler 
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Figure 1. Shock layer thickness F obtained from the numerical solution of the reduced governing equations and from an 
unsteady Euler code; hypersonic inviscid flow over a sphere with M ,  = 8 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Distance along sphere surface, s/D 

Figure 2. Body surface pressure ratio p b / p m  obtained from the numerical solution of the reduced governing equations and 
from an unsteady Euler code; hypersonic inviscid flow over a sphere with M ,  = 8 

equations has a noticeable error. The shock wave slope relative to the body surface, dF/d(, 
predicted by the pressure gradient splitting method also has a noticeable error as shown in 
Figure 3. The errors for both F and dF/d( vary along the body surface, with the maximum error 
for either being approximately 7%. The flow properties behind the shock wave are determined 
from the Rankine-Hugoniot relations and these properties are a function of F and dF/d(. The 
flow properties behind the shock wave are weakly dependent upon F and are predicted reasonably 
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Figure 3. Shock wave slope relative to the body surface, dF/dg', from the pressure gradient splitting method and from an 
unsteady Euler code; hypersonic inviscid flow over a sphere with M , = 8  
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well with the pressure gradient splitting method. This behaviour is illustrated in Figure 4, where 
the pressure behind the shock wave, psh/pco, from the pressure gradient splitting method is 
compared with the value obtained from the complete Euler equation solution. The maximum 
error of the pressure behind the shock wave is approximately 1.5%. The pressure gradient splitting 
method provides a reasonably accurate prediction of the pressure field with one downstream 
marching solution. This pressure result can provide a reasonably accurate estimate of the pressure 
gradient terms that have been neglected. Therefore a significantly improved prediction of the 
shock layer thickness should be obtained with only one additional global iteration. 

Solutions have been obtained for a range of Mach numbers to determine the properties of the 
pressure gradient splitting method with a change in flow conditions. The shock wave has been 
determined for several values of the free-stream Mach number. The values of the coefficients are 
given in Table I. By interpolation of the tabulated coefficients, the shock wave shape at other free- 
stream Mach numbers can be estimated. The solutions obtained with the pressure gradient 
splitting method for the various Mach numbers are illustrated in Figure 5. The reduced Euler 
equation results for the body surface pressure are compared with the complete Euler equation 
solutions27 in this figure. The reduced Euler equation results are close to the Euler results for the 
range of Mach numbers investigated. The influence of Mach number on the shock wave location 
at the stagnation point is shown in Figure 6. The pressure gradient splitting method overpredicts 

I I I I 1 1 I I 1 I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Distance along sphere surface, s/D 

Figure 4. Pressure ratio behind the shock wave, p,,,/p,, from the pressure gradient splitting method and from an unsteady 
Euler code; hypersonic inviscid flow over a sphere with M ,  = 8 

Table I 

M m  FLl F2 F4 F6 

3 0-1175 0.530 1.25 1.8 
5 0-08465 0.355 0.99 1.8 
8 0.07465 0.295 0.90 1.8 

20 0.06923 0.265 0.83 1.9 
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Figure 5. Body surface pressure ratio pb/pm from the pressure gradient splitting method and from an unsteady Euler code; 
inviscid flow over a sphere with various M ,  
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Figure 6. Shock layer thickness at the stagnation point obtained from the pressure gradient splitting method and from an 
unsteady Euler code; inviscid flow over a sphere with various Ma 

the shock layer thickness for all Mach numbers, with slightly increased error in the shock wave 
location occurring at lower Mach numbers. With the pressure gradient splitting method, solutions 
at various Mach numbers are obtained readily and the accuracy of the predictions is only slightly 
influenced by changing the free-stream Mach number. 
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9. CONCLUSIONS 

The pressure gradient splitting method provides reasonable engineering predictions of the 
hypersonic flow over blunt bodies. Global iteration to include the complete pressure gradient is 
feasible and logical from an analysis of the eigenvalues of the governing equations. The thin shock 
layer equation results are not in as good agreement with the exact solution as the pressure gradient 
splitting results. In addition, the global iteration of the thin shock layer equations does not provide 
a mechanism for information to be fed upstream as the eigenvalue analysis shows. This property of 
the thin layer equations raises questions on the suitability of these equations with an iteration 
technique for obtaining the complete solution of the Euler equations. 

Although the shock layer thickness and shock wave slope predicted with the pressure gradient 
splitting method are in error near the stagnation point, the flow properties behind the shock wave 
have a smaller error. The pressure gradient splitting method provides a good initial estimate of the 
pressure both at the shock wave and the body surface. In addition, it has been shown that the 
pressure gradient splitting method can be applied over a range of free-stream Mach numbers with 
the accuracy of the results only slightly dependent on the Mach number. 
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